Mallard Pass
 Solar Farm

Mallard Pass Solar Farm

Environmental Statement Volume 2 Appendix 12.4: Land Use and Soils Agricultural Land Classification Survey

November 2022

PINS Ref: EN010127
Document Ref: EN010127/APP/6.2
Revision PO
Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 - Reg 5 (2) (a)

Appendix 12.4: Agricultural Land Classification

MALLARD PASS SOLAR

AGRICULTURAL LAND
 CLASSIFICATION

November 2022

COPYRIGHT

The contents of this document must not be copied in whole or in part without the written consent of Kernon Countryside Consultants.

CONTENTS

1 Introduction
2 Methodology
3 Known and Predictive Land Quality
4 Factors Affecting Land Quality
5 ALC Grading of the Site
6 Soil Sensitivity

Annexes

1 Natural England Technical Information Note TIN049
2 Available ALC from www.magic.gov.uk
3 Photos of Soil Pits
4 Soil Profile Log
5 Description of Soil Pits
6 Certificates of Analysis

Plans

KCC3051/01A Auger Point Plan
Figure 12.1 ALC Across Order Limits
Figure 12.2 ALC Solar PV Site and Field Margins
1.1 This report sets out the results of an Agricultural Land Classification (ALC) of 852 hectares of land near the villages of Essendine and Ryhall.
1.2 The area was initially surveyed at a semi-detailed survey level, involving auger samples on a regular 200 m grid. This was supplemented by a detailed ALC over parts of the site, sampling at a regular 100 m grid spacing, focusing on areas identified as mostly better quality land in order to refine the boundaries between grades.
1.3 The Site comprises a mixture of land qualities, with Grades 2, Subgrades 3a and 3b, and Grade 4. Areas of farm woodland are excluded from the survey area, as shown on the plans.
1.4 This report is structured as follows:
(i) section 2 describes the methodology;
(ii) section 3 describes the known and predictive land quality of the wider area;
(iii) section 4 describes the relevant factors in delivering ALC;
(iv) and section 5 sets out the results.

2
 METHODOLOGY

2.1 The work has been carried out by a Chartered Scientist (CSci), who is a Fellow (F. I. Soil Sci) of the British Society of Soil Science (BSSS). This ALC survey has been carried out by a soil scientist who meets the requirements of the BSSS Professional Competency Standard (PSC) scheme for ALC (see BSSS PCS Document 2 'Agricultural Land Classification of England and Wales'1). The BSSS PSC scheme is endorsed, amongst others, by the Department for Environment, Food and Rural Affairs (Defra), Natural England, the Science Council, and the Institute of Environmental Assessment and Management (IEMA).
2.2 This assessment is based upon the findings of a study of published information on climate, geology and soil in combination with a soil investigation carried out in accordance with the Ministry of Agriculture, Fisheries and Food (MAFF) ${ }^{2}$ 'Agricultural Land Classification of England and Wales: Revised Guidelines and Criteria for Grading the Quality of Agricultural Land', October 1988 (henceforth referred to as the 'the ALC Guidelines').
2.3 The ALC system provides a framework for classifying land according to the extent to which its physical or chemical characteristics impose long-term limitations on agricultural use. The ALC system divides agricultural land into five grades (Grade 1 'Excellent' to Grade 5 'Very Poor'), with Grade 3 subdivided into Subgrade 3a 'Good' and Subgrade 3b 'Moderate'. Agricultural land classified as Grade 1, 2 and Subgrade 3a falls in the 'best and most versatile' (BMV) category as defined in Annex 2 of the National Planning Policy Framework (NPPF), revised July 2021. Further details of the ALC system and national planning policy implications are set out by Natural England in its Technical Information Note 0493.
2.4 A semi-detailed ALC survey was carried out in December 2021. The survey involved examination of the soil's physical properties at 217 auger bore locations on a 200 m by 200m grid, as shown on Plan KCC3051/01A. For the purpose of the ALC survey, the Site was divided up into 11 parcels, labelled A to K on Plan KCC3051/01A. Each parcel contained approximately 20 auger-bore locations, and represents the area covered by one ALC surveyor per day.

[^0]2.5 Following discussions with Natural England, further sampling of an additional 117 auger bores were carried out, principally in parcel areas A, D, H, I and J, where the sampling density was increased to a 100 metre grid. These are also shown on Plan KCC3051/01A.
2.6 Four soil pits were excavated with a spade to examine certain soil physical properties, such as stone content and subsoil structure, in more detail.
2.7 A sample of topsoil was collected at 11 auger-bore locations. The samples were sent to an accredited laboratory for particle size analysis, i.e., the proportions of sand, silt and clay. This is to determine the definitive texture class of the topsoil.
2.8 The sample locations were located using a hand-held Garmin E-Trec Geographic Information System (GIS) to enable the sample locations to be relocated for verification, if necessary.
2.9 The soil profile was examined at each sample location to a maximum depth of approximately 1.2 m by hand with the use of a 5 cm diameter Dutch (Edleman) soil auger. The soil profile at each sample location was described using the 'Soil Survey Field Handbook: Describing and Sampling Soil Profiles' (Ed. J.M. Hodgson, Cranfield University, 1997). Each soil profile was ascribed a grade following the ALC Guidelines.

BMV Generally

3.1 The best and most versatile (BMV) agricultural land is that in Grades 1, 2 and 3a of the ALC (see 2.3 above).
3.2 Nationally across England BMV is estimated to account for 42\% of agricultural land (see Natural England's Technical Information Note TIN049, 2012) reproduced in Annex 1). It is not, therefore, a particularly rare resource.

Published ALC Data

3.3 In the 1970's MAFF published "provisional" ALC maps. As described in TIN 049, these were not based on extensive survey, and are not suitable for site-specific analysis. The survey area is shown as mostly undifferentiated Grade 3.
Insert 1: Extract from Provisional ALC (original plan at 1:250,000 scale)

Predictive BMV Maps

3.4 In 2017 Natural England published predictive BMV maps, dividing England into areas according to the percentage of land likely to be of BMV quality. They are categorised as low (<20\% area BMV), medium ($20-60 \%$ area BMV) and high ($>60 \%$ area BMV). This area is mostly in the low probability of bmv, as shown below.

Insert 2: Extract from Predictive BMV Map

(Original plan at 1:250,000)
3.5 In the wider context, as shown below, the area is some of the poorest quality available. Insert 3: Wider Predictive BMV Map

Available Survey Results

3.6 Where MAFF has carried out ALC survey results they are available on the Multi-Agency Geographic Information for the Countryside website www.magic.co.uk.
3.7 No survey results are available for the area within the Site, however those in the wider area generally comprise a mix of Subgrades 3a and 3b. The map is reproduced in Annex 2, with an extract below.

Insert 4: Available ALC Data

Not to scale

4 FACTORS AFFECTING LAND QUALITY

4.1 As described in the ALC Guidelines, the main physical factors influencing agricultural land quality are:

- climatic limitations;
- site limitations;
- soil limitations; and
- interactive limitations.
4.2 These factors are considered in turn below.

Climatic Limitations

4.3 Interpolated climate data relevant to the determination of the ALC grade of land at the Site is given in Table 1 below.
Table 1: ALC Climate Data for Mallard's Pass ${ }^{(1)}$

Climate Parameter	Grid Ref: TF025138 (Area A, North)	Grid Ref: TF053113 (Area I, Central)	Grid Ref: TF051096 (Area K, South)
Average Altitude (m)	53	21	41
Average Annual Rainfall (mm)	589	575	584
Accumulated Temperature above 0C (January - June)	1394	1431	1409
Moisture Deficit (mm) Wheat	111	117	114
Moisture Deficit (mm) Potatoes	104	111	107
Field Capacity Days (FCD)	118	112	114
Grade according to climate	1	1	1

${ }^{(1)}$ Climatological Data for Agricultural Land Classification, The Met. Office (1989)
4.4 Agricultural land quality within the Site is not limited by climate with reference to Figure 1 'Grade according to climate' on page 6 of the ALC Guidelines. In this case, agricultural land within the Site could be Grade 1 without any additional limitations.
4.5 The soil profiles across the Site are predicted to be at field capacity (i.e., the amount of soil moisture or water content held in the soil after excess water has drained away) for approximately 112-118 Field Capacity Days (FCD) per year, mainly over the late autumn, winter and early spring. The climate interacts with soil physical properties, i.e., soil texture
and wetness class, and can limit agricultural land quality due to soil wetness as per Table 6 of the ALC Guideline 'Grade according to soil wetness'. It should be noted that the number of FCD at this Site falls in the FCD category <126 for determining the grade according to wetness; this indicates the land in this climate area is drained/workable for quite a long period over the year in comparison with central lowland England which has approximately 150 FCD.

Site Limitations

4.6 The Site is located to north east of Stamford, on the Rutland-Lincolnshire border. The Site is mainly surrounded by agricultural land, with residential development of Essendine to the north, and a railway through the centre of the Site between Essendine and Tallington. The approximate centre of the Site is located at British National Grid (BNG) reference TF 052115.
4.7 With regard to the ALC Guidelines, agricultural land quality can be limited by one or more of three main site factors as follows:

- gradient;
- micro-relief (i.e., complex change in slope angle over short distances); and
- risk of flooding.
4.8 Gradient and Micro Relief. The land in the Site is undulated and reaches and elevation of approximately 69 metres (m) Above Ordnance Datum (AOD) at the highest point in the north and western regions. The lowest ground occurs in the centre at an elevation of approximately 20 mAOD . The quality of agricultural land over the Site is not limited by gradient, which does not exceed 7°. No part of the Site is limited by micro-relief (i.e., complex changes in slope angle and direction over short distances).
4.9 Risk of Flooding. From the Government Flood Map for Planning website ${ }^{4}$, the Site is mainly located in Flood Zone 1, with a region of Flood Zone 2 and 3 in the centre bordering the course of the West Glen River. However, there are no records (data) to show that agricultural land in any part of the Site is limited by flooding, according to the criteria for frequency and/or duration in Table 2 ' Grade according to flood risk in summer' and/or Table 3 'Grade according to flood risk in winter' of the ALC Guidelines.

[^1]
Soil Limitations

4.10 Geology/Soil Parent Material. From British Geological Survey (BGS) maps at 1:50,000 scale, the land in the Site is underlain by limestone in the Blisworth Limestone Formation and the Rutland Formation (argillaceous rocks with subordinate sandstone and limestone). The land in the north west is underlain by limestone in the Upper Lincolnshire Limestone Member. The eastern and southern parts of the Site are underlain by mudstone in the Kellaways Clay Member and Blisworth Clay Formation, with small areas of limestone in the Cornbrash Formation.
4.11 Most of the bedrock is not covered by any superficial deposits, but there is a narrow band of Alluvium (clay, silt, sand and gravel) and River Terrace Deposits (sand and gravel) bordering the West Glen River. There are also smaller regions of Glaciofluvial Deposits (Mid Pleistocene; sand and gravel) in the east and south, with an isolated region of glacial Till (Mid Pleistocene; diamicton) in centre of the Site.
4.12 Published Information on Soil. Soil information is available only at a small scale (1:250,000) on the National Soil Map published by the Soil Survey of England and Wales (SSEW) in 1983. This provisional soil map indicates that land at the Site is covered soils grouped in the Elmton 1, Elmton 3, Denchworth, Fladbury 1 and Sherborne Association.
4.13 As described by the SSEW, the Elmton 1 Association is found on gently undulating plateaux or dipslopes dissected by dry valleys. Although there is wide variation in the component soils because of the range of parent materials, the association consists mainly of shallow brown soils with small areas of deeper brown calcareous soils. These soils are permeable and well drained (Wetness Class I).
4.14 The Elmton 3 Association consists of shallow loamy and clayey soils over limestone and deeper slowly permeable clayey soils on clay-shale. These soils are well drained (Wetness Class I) but, in places, receive seepage or run-off water from adjacent Denchworth, Haselor and Evesham soils.
4.15 The Denchworth Associaiton is extensive on Jurassic and Cretaceous clays and clay shales in the Midlands, South West and South East England. It consists mainly of wet clayey soils, that are stoneless, strongly mottled and waterlogged for long periods in winter (Wetness Class IV and V).
4.16 The Fladbury 1 Association comprise deep clayey alluvial soils and prominently mottled directly below the topsoil. The subsoils are usually slowly permeable, however the primary
source of waterlogging is groundwater which fluctuates seasonally with changes in the river level and the duration of waterlogging is often related to elevation. In winter months, these soils often suffer prolonged waterlogging (Wetness Class V).
4.17 The Sherborne Association soils is extensive in South West England and occurs in small patches in Oxfordshire, Warwickshire, Cambridgeshire, Lincolnshire and Northamptonshire. This Association is developed on Jurassic limestone with thin interbedded clays giving a varied soil pattern. These soils are soils are very permeable and naturally well drained (Wetness Class I).
4.18 Soil Survey. The semi-detailed soil survey carried out in December 2021, supplemented by the detailed survey in September and October 2022, determined that the soils within the Site are predominantly developed over limestone (several different geological types, as described above) and are accordingly quite variable spatially over short distances, e.g., due to variations in soil depth to impenetrable rock, stone/rock content and wetness class. This leads to a quite complex pattern of ALC Grade 2, Subgrade 3a, Subgrade 3b and Grade 4 due to a combination of factors, particularly soil droughtiness and topsoil stone content on Elmton and Sherborne soils over limestone, and soil wetness on wetter and heavier (clayey) Denchworth soils over mudstone and Fladbury soils developed in river alluvium.
4.19 A log of all the soil profiles recorded on the Site is available on request. Four soil pits were excavated with a spade to examine certain soil physical properties, such as subsoil structure, in more detail. The first pit (Pit 1) was located in Area D near auger-bore 90, and Pit 2 was located in Area G near auger-bore 105, as shown on Plan KCC3051/01A. Two further pits were dug in Areas I and J , and a total of 10 archaeological trenches (open at the time of survey) were examined. Photographs of some of these areas are in Annex 3.

In order to substantiate topsoil texture determined during the ALC survey by hand-texturing, 11 samples of topsoil were collected over the Site. The topsoil sample was sent to an accredited laboratory for analysis of particle size distribution (PSD), based on the British Standard Institution particle size grades. The certificates of analysis are provided as Annex
4. The findings of the PSD analysis are shown in Table 2 below.

Table 2: Topsoil Texture (re Table 10, ALC Guidelines)

Topsoil Sample Location (See Plan KCC3051/01A)	\% sand 0.063-2.0 $\mathbf{m m}^{*}$	\% silt 0.002-0.063 $\mathbf{m m}$	\% clay <0.002 $\mathbf{~ m m}$	ALC Soil Texture Class
Area A, AB8	38	41	21	Medium Clay Loam
Area B, AB25	30	50	20	Medium Clay Loam
Area C, AB48	31	44	25	Medium Clay Loam
Area D, AB91	28	44	28	Heavy Clay Loam
Area E, AB64	32	34	34	Heavy Clay Loam
Area F, AB102	23	53	24	Medium Clay Loam
Area G, AB119	39	43	18	Medium Clay Loam/Medium Sandy Silt Loam
Area H, AB149	20	43	37	Clay
Area I, AB162	6	39	55	Clay
Area J, AB173	23	42	35	Heavy Clay Loam/Clay
Area K, AB207	24	47	29	Heavy Clay Loam

Interactive Limitations

4.21 From the information above, together with the findings of the semi-detailed and detailed soil survey, it has been determined that the quality of agricultural land in many soil profiles over the Site is limited by soil wetness where there are heavy (clayey) and slowly permeable and seasonally waterlogged soil developed from mudstone and alluvium. Some land is limited by soil droughtiness where it has calcareous and stony soils developed over limestone. These interactive limitations are described in more detail below.
4.22 Soil Wetness. From the ALC Guidelines, a soil wetness limitation exists where 'the soil water regime adversely affects plant growth or imposes restrictions on cultivations or grazing by livestock. Agricultural land quality at the Site is limited by soil wetness as per Table 3 below (based on Table 6 'Grade According to Soil Wetness - Mineral Soils' in the ALC Guidelines).

Table 3: ALC Grade According to Soil Wetness

Wetness Class	Texture of the Top 25 cm	<126 Field Capacity Capacity Days
I	Sand, Loamy Sand, Sandy Loam, Sandy Silt Loam Sandy Clay Loam/Medium Silty Clay Loam /Medium Clay Loam* Heavy Silty Clay Loam/Heavy Clay Loam** Sandy Clay/Silty Clay/Clay	$\begin{gathered} 1 \\ 1 \\ 2 \\ 3 \mathrm{a}(2) \\ \hline 1 \end{gathered}$
II	Sand, Loamy Sand, Sandy Loam, Sandy Silt Loam Sandy Clay Loam/Medium Silty Clay Loam /Medium Clay Loam* Heavy Silty Clay Loam/Heavy Clay Loam** Sandy Clay/Silty Clay/Clay	$\begin{gathered} 1 \\ 2 \\ 3 \mathrm{a}(2) \\ 3 \mathrm{a}(2) \end{gathered}$
III	Sand, Loamy Sand, Sandy Loam, Sandy Silt Loam Sandy Clay Loam/Medium Silty Clay Loam /Medium Clay Loam* Heavy Silty Clay Loam/Heavy Clay Loam** Sandy Clay/Silty Clay/Clay	$\begin{gathered} 2 \\ 3 a(2) \\ 3 b(3 a) \\ 3 b(3 a) \end{gathered}$
IV	Sand, Loamy Sand, Sandy Loam, Sandy Silt Loam Sandy Clay Loam/Medium Silty Clay Loam /Medium Clay Loam* Heavy Silty Clay Loam/Heavy Clay Loam** Sandy Clay/Silty Clay/Clay	$\begin{aligned} & 3 \mathrm{a} \\ & 3 \mathrm{~b} \\ & 3 \mathrm{~b} \\ & 3 \mathrm{~b} \\ & \hline \end{aligned}$
V	Sand, Loamy Sand, Sandy Loam, Sandy Silt Loam Sandy Clay Loam/Medium Silty Clay Loam /Medium Clay Loam* Heavy Silty Clay Loam/Heavy Clay Loam** Sandy Clay/Silty Clay/Clay	
Key * 18% to <27\% clay; and ** 27% to 35% clay		

In a climate area with <126 FCD, profiles which are slowly permeable and seasonally waterlogged (Wetness Class III) are limited by soil wetness to Subgrade 3a where the topsoil is non-calcareous, medium clay loam. Where the topsoil has been determined by hand-texturing and laboratory analysis to be non-calcareous heavy clay loam, profiles in Wetness Class III are limited by soil wetness to Subgrade 3b.
4.24 Soil Droughtiness. From the ALC Guidelines, a soil droughtiness limitation exists 'in areas with relatively low rainfall or high evapotranspiration, or where the soil holds only small reserves of moisture available to plant roots.' The ALC grade according to soil droughtiness is shown in Table 4 below (based on Table 8 'Grade According to Droughtiness' in the ALC Guidelines). To be eligible for Grades 1 to 3b the moisture balances (MBs) must be equal to, or exceed, the stated minimum values for both wheat and potatoes. If the MB for either crop is less (i.e. more negative) than that shown for Subgrade 3b, the soil is Grade 4 on droughtiness).

Table 4: ALC Grade According to Droughtiness (re Table 8 of the MAFF ALC Guidelines)

Grade/Subgrade	Moisture Balance (MB) Limits (mm)	
	Wheat	Potatoes
$\mathbf{1}$	+30	+10
$\mathbf{2}$	+5	-10
3a	-20	-30
3b	-50	-55
$\mathbf{4}$	<-50	<-55

4.25 It has been calculated that Moisture Balance (MB) values are sufficient to limit agricultural land over the Site, but predominantly in areas underlain by limestone, to a mixture of Grade 2, Subgrade 3a, and Subgrade 3b. Some land in Area H (see Plan KCC3051/01A) which is shallow and brashy (stony) over limestone is limited by soil droughtiness to Grade 4.
5.1 The area and proportion of agricultural land in each ALC grade has been measured from an ALC map. The findings are reported below.
5.2 As described above, the semi-detailed soil survey carried out in December 2021 determined the soils at within the Site are predominantly developed over limestone (several different geological types, as described above) and are accordingly quite variable spatially over short distances, e.g., due to variations in soil depth to impenetrable rock, stone/rock content and wetness class. This leads to a quite complex pattern of ALC Grade 2, Subgrade 3a, Subgrade 3b and Grade 4 due to a combination of factors, namely: soil droughtiness and topsoil stone content on Elmton and Sherborne soils over limestone. Some land is limited by soil wetness to Subgrade 3a and Subgrade 3b, where the soils are slowly permeable and seasonally waterlogged (Wetness Class III). These include clayey Denchworth soils developed in mudstone, and silty-clay Fladbury soils developed in river alluvium flanking the West Glen River which flows through the central parts of the Site.
5.3 Significant parts of the site were then the subject of additional survey to a detailed level. The revised results, being a mixture of detailed and semi-detailed, are shown below. This is shown on Figure 12.1. This relates to the Order Limits.
Table 5: Order Limits (detailed and semi-detailed ALC)

ALC Grade	Area (Ha)	Area (\%)
Grade 1 (Excellent)	0	0
Grade 2 (Very Good)	100	11.7
Subgrade 3a (Good)	260	30.5
Subgrade 3b (Moderate)	439	51.5
Grade 4 (Poor)	18	2.1
Grade 5 (Very Poor)	0	0
Urban	3	0.4
Not surveyed (roads, railway, verges etc)	32	3.8
Total	$\mathbf{8 5 2}$	$\mathbf{1 0 0}$

5.4 Solar PV Arrays are proposed only over part of the site. Taking the Solar PV Array area plus land between the arrays and the fence, the areas are as follows. This is shown on Figure 12.2.

Table 6: Solar PV Array and Field Margins

ALC Grade	Area (Ha)	Area (\%)
Grade 1 (Excellent)	0	0
Grade 2 (Very Good)	35	6.6
Subgrade 3a (Good)	181	34.1
Subgrade 3b (Moderate)	297	55.9
Grade 4 (Poor)	18	3.4
Grade 5 (Very Poor)	0	0
Non-agricultural / Other land	0	0
Urban	0	0
Total	$\mathbf{5 3 1}$	$\mathbf{1 0 0 . 0}$

6.1 Soil resilience to being handled is described in the table below.

Table 7: Soil Resilience
Table 1.1: Soil Handling Units

Soil Handling Unit/Sensitivity A (Green) - Low Sensitivity	Resilience to structural damage during soil handling	High Soil Texture Class
B (Orange) - Medium Sensitivity	Moderate	Light textured soils: sand (S), loamy sands (LS), sandy loam (SL), sandy silt loams (SZL); where fewer than 225 Field Capacity Days (FCD) (Average Annual Rainfall (AAR) less than 1000mm).
C (Red) - High	Above textures where there are 225 FCD or more (AAR 1000mm or greater). Medium textured soils with less than 27\% clay content: silt loam (ZL), medium silty clay loam (MZCL), medium clay loam (MCL), sandy clay loam (SCL); where there are 225 FCD or fewer (AAR 1000mm or less). Heavy textures below (i.e., more than 27\% clay content) where fewer than 150 FCD (AAR less than 700mm).	
Sensitivity		Medium textures above where there are more than 225 FCD (AAR greater than 1000mm). Heavy textures soils with more than 27\% clay content: heavy silty clay loams (HZCL), heavy clay loam (HCL), sandy clay (SC) silty clay (ZC) clay (C); where FCD are 150 or more (AAR $700 m m$ or greater). Organic and peaty soils.

6.2 The resilience of soils across the site is plotted below. All soils are of medium sensitivity in this climate area.

Insert 5: Soil Resilience in the Area

Annex 1
Natural England Technical Information
Note TINO49

Agricultural Land Classification: protecting the best and most versatile agricultural land

Most of our land area is in agricultural use. How this important natural resource is used is vital to sustainable development. This includes taking the right decisions about protecting it from inappropriate development.

Policy to protect agricultural land

Government policy for England is set out in the National Planning Policy Framework (NPPF) published in March 2012 (paragraph 112). Decisions rest with the relevant planning authorities who should take into account the economic and other benefits of the best and most versatile agricultural land. Where significant development of agricultural land is demonstrated to be necessary, local planning authorities should seek to use areas of poorer quality land in preference to that of higher quality. The Government has also re-affirmed the importance of protecting our soils and the services they provide in the Natural Environment White Paper The Natural Choice:securing the value of nature (June 2011), including the protection of best and most versatile agricultural land (paragraph 2.35).

The ALC system: purpose \& uses
Land quality varies from place to place. The Agricultural Land Classification (ALC) provides a method for assessing the quality of farmland to enable informed choices to be made about its future use within the planning system. It helps
underpin the principles of sustainable development.

Agricultural Land Classification - map and key

Natural England Technical Information Note TIN049
Agricultural Land Classification: protecting the best and most
versatile agricultural land

The ALC system classifies land into five grades, with Grade 3 subdivided into Subgrades 3a and 3 b . The best and most versatile land is defined as Grades 1, 2 and 3a by policy guidance (see Annex 2 of NPPF). This is the land which is most flexible, productive and efficient in response to inputs and which can best deliver future crops for food and non food uses such as biomass, fibres and pharmaceuticals. Current estimates are that Grades 1 and 2 together form about 21\% of all farmland in England; Subgrade 3a also covers about 21%.

The ALC system is used by Natural England and others to give advice to planning authorities, developers and the public if development is proposed on agricultural land or other greenfield sites that could potentially grow crops. The Town and Country Planning (Development Management Procedure) (England) Order 2010 (as amended) refers to the best and most versatile land policy in requiring statutory consultations with Natural England. Natural England is also responsible for Minerals and Waste Consultations where reclamation to agriculture is proposed under Schedule 5 of the Town and Country Planning Act 1990 (as amended). The ALC grading system is also used by commercial consultants to advise clients on land uses and planning issues.

Criteria and guidelines

The Classification is based on the long term physical limitations of land for agricultural use. Factors affecting the grade are climate, site and soil characteristics, and the important interactions between them. Detailed guidance for classifying land can be found in: Agricultural Land Classification of England and Wales: revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988):

- Climate: temperature and rainfall, aspect, exposure and frost risk.
- Site: gradient, micro-relief and flood risk.
- Soil: texture, structure, depth and stoniness, chemical properties which cannot be corrected.

The combination of climate and soil factors determines soil wetness and droughtiness.

Wetness and droughtiness influence the choice of crops grown and the level and consistency of yields, as well as use of land for grazing livestock. The Classification is concerned with the inherent potential of land under a range of farming systems. The current agricultural use, or intensity of use, does not affect the ALC grade.

Versatility and yield

The physical limitations of land have four main effects on the way land is farmed. These are:

- the range of crops which can be grown;
- the level of yield;
- the consistency of yield; and
- the cost of obtaining the crop.

The ALC gives a high grading to land which allows more flexibility in the range of crops that can be grown (its 'versatility') and which requires lower inputs, but also takes into account ability to produce consistently high yields of a narrower range of crops.

Availability of ALC information

After the introduction of the ALC system in 1966 the whole of England and Wales was mapped from reconnaissance field surveys, to provide general strategic guidance on land quality for planners. This Provisional Series of maps was published on an Ordnance Survey base at a scale of One Inch to One Mile in the period 1967 to 1974. These maps are not sufficiently accurate for use in assessment of individual fields or development sites, and should not be used other than as general guidance. They show only five grades: their preparation preceded the subdivision of Grade 3 and the refinement of criteria, which occurred after 1976. They have not been updated and are out of print. A 1:250 000 scale map series based on the same information is available. These are more appropriate for the strategic use originally intended and can be downloaded from the Natural England website. This data is also available on 'Magic', an interactive, geographical information website http://magic.defra.gov.uk/.

Since 1976, selected areas have been resurveyed in greater detail and to revised

Natural England Technical Information Note TIN049
Agricultural Land Classification: protecting the best and most versatile agricultural land
guidelines and criteria. Information based on detailed ALC field surveys in accordance with current guidelines (MAFF, 1988) is the most definitive source. Data from the former Ministry of Agriculture, Fisheries and Food (MAFF) archive of more detailed ALC survey information (from 1988) is also available on http://magic.defra.gov.uk/. Revisions to the ALC guidelines and criteria have been limited and kept to the original principles, but some assessments made prior to the most recent revision in 1988 need to be checked against current criteria. More recently, strategic scale maps showing the likely occurrence of best and most versatile land have been prepared. Mapped information of all types is available from Natural England (see Further information below)

New field survey

Digital mapping and geographical information systems have been introduced to facilitate the provision of up-to-date information. ALC surveys are undertaken, according to the published Guidelines, by field surveyors using handheld augers to examine soils to a depth of 1.2 metres, at a frequency of one boring per hectare for a detailed assessment. This is usually supplemented by digging occasional small pits (usually by hand) to inspect the soil profile. Information obtained by these methods is combined with climatic and other data to produce an ALC map and report. ALC maps are normally produced on an Ordnance Survey base at varying scales from 1:10,000 for detailed work to 1:50 000 for reconnaissance survey

There is no comprehensive programme to survey all areas in detail. Private consultants may survey land where it is under consideration for development, especially around the edge of towns, to allow comparisons between areas and to inform environmental assessments. ALC field surveys are usually time consuming and should be initiated well in advance of planning decisions. Planning authorities should ensure that sufficient detailed site specific ALC survey data is available to inform decision making.

Consultations

Natural England is consulted by planning authorities on the preparation of all development
plans as part of its remit for the natura environment. For planning applications, specific consultations with Natural England are required under the Development Management Procedure Order in relation to best and most versatile agricultural land. These are for non agricultural development proposals that are not consistent with an adopted local plan and involve the loss of twenty hectares or more of the best and most versatile land. The land protection policy is relevant to all planning applications, including those on smaller areas, but it is for the planning authority to decide how significant the agricultural land issues are, and the need for field information. The planning authority may contact Natural England if it needs technical information or advice.

Consultations with Natural England are required on all applications for mineral working or waste disposal if the proposed afteruse is for agriculture or where the loss of best and most versatile agricultural land agricultural land will be 20 ha or more. Non-agricultural afteruse, for example for nature conservation or amenity, can be acceptable even on better quality land if soil resources are conserved and the long term potential of best and most versatile land is safeguarded by careful land restoration and aftercare.

Other factors

The ALC is a basis for assessing how development proposals affect agricultural land within the planning system, but it is not the sole consideration. Planning authorities are guided by the National Planning Policy Framework to protect and enhance soils more widely. This could include, for example, conserving soil resources during mineral working or construction, not granting permission for peat extraction from new or extended mineral sites, or preventing soil from being adversely affected by pollution. For information on the application of ALC in Wales, please see below.

Natural England Technical Information Note TIN049
Agricultural Land Classification: protecting the best and most versatile agricultural land

Further information

Details of the system of grading can be found in: Agricultural Land Classification of England and Wales: revised guidelines and criteria for grading the quality of agricultural land (MAFF, 1988).

Please note that planning authorities should send all planning related consultations and enquiries to Natural England by e-mail to consultations@naturalengland.org.uk. If it is not possible to consult us electronically then consultations should be sent to the following postal address:

Natural England
Consultation Service
Hornbeam House
Electra Way
Crewe Business Park
CREWE
Cheshire
CW1 6GJ
ALC information for Wales is held by Welsh Government. Detailed information and advice is available on request from lan Rugg br David Martyn If it is not
possible to consult us electronically then consultations should be sent to the following postal address:

Welsh Government
Rhodfa Padarn
Llanbadarn Fawr
Aberystwyth
Ceredigion
SY23 3UR
Natural England publications are available to download from the Natural England website: www.naturalengland.org.uk.

For further information contact the Natural England Enquiry Service on 03000600863 or email enquiries@naturalengland.org.uk.

Copyright

This note is published by Natural England under the Open Government Licence for public sector information. You are encouraged to use, and reuse, information subject to certain conditions. For details of the licence visit www.naturalengland.org.uk/copyright. If any information such as maps or data cannot be used commercially this will be made clear within the note.

[^2]
Annex 2

Available ALC from www.magic.gov.uk

Annex 3

Photos of Soil Pits

Trench 2 in shallow valley bottom, West of AB5 and AB9 at TF 0342712632

Trench 4 at TF 0359912622 on lower slopes towards valley bottom. Very variable.

Above, Limestone is 'weathered' / 'altered' rather than solid. Few very fine roots, but very dense and compact so probably only rootable for about 20 cm .

Annex 4

Soil Profile Logs

Site A

SITE B

SITEC

5						${ }^{3}$			CaCO3 $\left.\begin{array}{l}\text { VC－Very calcareous（ }(10 \% \text { CaCO3）} \\ \text { VC }- \text { Very calcareous（ }>10 \% \text { CaCO3 }\end{array}\right)$		$\underbrace{2 / 2}$
										10	－
									－Very calcareous（ 110% CaCO3） －Very calcareous（＞10\％CaCO3）		－
пзер в									cien	$\operatorname{lin}_{100}^{600}$	－
			等							盛	amem
an smon ism			\qquad					dicle			${ }^{2}$
											$2^{\text {amemeses }}$
									何		mess
											2^{2}
cemen									andemen		${ }^{2}$ amentuem
									and		\％
									何		camm
5ex seme								cismen			$\underbrace{2}$
\％	$\underbrace{\text { and }}$							${ }_{\text {and }}$			mema
									（ex）		$\underbrace{\text { anobenes }}$
											2 osemeas

SITE D

			Toll Textue				Pes		Catas	Wma ssil	
	$\begin{array}{llll} \hline 0 & 28 & 28 & 7.5 Y R 4 / 6 \\ 28 & 30 & 2 & 7.5 Y R 4 / 6 \\ 30 & 40 & 10 & \\ 40 & 120 & 80 & \\ \hline \end{array}$			$\substack{8,52 \\ 50 \\ 80 \\ 80 \\ 80}$							
				$\begin{aligned} & 3,3 \\ & \substack{30 \\ 500 \\ 500} \end{aligned}$						No No	miness
				\square				Not Applicable Moderate Moderate Moderate			Estriness
				$\underbrace{2}_{\substack{22 \\ 50 \\ 50}}$							Ustiness
									(s)		${ }_{\text {weness }}{ }^{\text {39 }}$
				$5_{0}^{5} 5^{3}$							weness $\quad{ }^{\text {30 }}$
38.				\square					Now-		${ }_{\text {weness }}{ }^{36}$
									(e)		bines
				$\begin{aligned} & 33^{3} \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$							Webtine
				$\begin{aligned} & 3_{3}^{3} \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$							oustiness
								$\begin{aligned} & \text { Not Applicable } \\ & \text { Moderate } \\ & \text { Moderate } \\ & \text { Moderate } \end{aligned}$			$\underbrace{\text { Ooustranes }}$
				$\left[\begin{array}{l} 3_{3}^{3} \\ \substack{30 \\ 50 \\ 50} \\ \hline \end{array}\right.$							mines
											Oubtiness ${ }^{\text {ab }}$
									Sce		oustrines
			$\begin{array}{\|l\|l\|} \hline \text { es } & \begin{array}{l} \text { C Clay } \\ \text { C- Clay } \\ \\ \text { IMP - Impenetrable to roots } \end{array} \\ \hline \end{array}$	50				Moderate Moderate			4^{4}

SITE E

SITE F

SITE G

SITE H

Fanexisix	3						$=2=$		
	$\square^{4}{ }^{2}$			VW= =		\pm	Vasw		
	边 ${ }^{2}$		-				2 max	${ }^{\circ}$	
	$5{ }^{4}$		\%				2wa	$=$	
	5 ${ }^{2}$		\pm			\pm	$\pm=$ ²	$=$	
	B 0^{8}		$=$			$=$	2ve	\because	
	$5{ }^{5}$		\%				=2"		
	H2:						xax		
							2=a		
				\because Wava=avau			2wa		
	Hum $=5$, mm	\%	$\because=$ avavis		" ${ }^{\text {c }}$	\pm ² \%	\cdots	
	H\%		F\%			\pm	Masw	F*********	
	为		$F=$			\#	2-	$\because *$	
			=				5xamem	\pm	
			$1{ }^{\text {axam }}$				-		
	$\square^{*}{ }^{2}$	-	\% \%			\cdots	= =avem		
			5			\pm	\pm 2a	$\because *$	
			- \%				2maxe		
			$5 \times$				= = w	\pm	
	$5{ }^{2}$		$=$				2wa		
			$E^{2}=$	$\because=$ Vava		\pm	2) $=$	\pm	
	508			2*avavaver				\pm	
			2				2xa		
			$\cdots \pm$				$: 2=2=$		

SITE I

SITE J

SITE K

Detailed: Area A

Project Number	Project Name	Parcel
C925A	Mallard Pass	Area A

Date of Survey	Survey Type	Surveyor(s)	Company
		Sedailed ALC	

Weather	Relief		Land use and vegetation	
Mild, cloudy	Gently undulated		CER (Cereals)	
Grid Reference		Postcode	Altitude	Area
TF027130			52	

MAFF prov	MAFF detailed	Flooding
Grade 3	None	Flood Zone 1

AAR	ATO	MDw	111	MDp	FCD
Climate grade					
590	1394	111	1		

Bedrock	Superficial deposits
Blisworth Formation	None

Soil association(s) 1:250,000	Detailed soil information
Elmton 1	None

Revision Number	Date Revised
2	$03 / 11 / 2022$

Detailed: Area D

Project Number	Project Name		Parcel				
C925D	Mallard Pass Area D		Area D				
Date of Survey	Survey Type	Surveyor(s)	Company				
$19 / 10 / 2022$	Detailed ALC		Askew Land and				

Weather	Relief		Land use and vegetation	
Mild, cloudy	Gently undulated		CER (Cereals)	
Grid Reference		Postcode	Altitude	Area
TF036124		PE9 4QD	51	

MAFF prov	MAFF detailed		Flooding		
Grade 3	None		Flood Zone 1		
AAR	AT0	MDw	MDp	FCD	Climate grade
590	1396	112	104	117	1

Bedrock	Superficial deposits
Upper Lincolnshire/Rutland/Blisworth	None

Soil association(s) 1:250,000	Detailed soil information
Elmton 1 and Elmton 3	None

Revision Number	Date Revised
1	$28 / 10 / 2022$

Detailed: Area H SP1

Project Number	Project Name	Parcel	
C925H	Mallard Pass Detailed ALC		
Date of Survey	Survey Type	SP1	
		Surveyor(s)	Company
$13 / 10 / 2022$	Detailed ALC	RDM	Askew Land and

Weather	Relief		Land use and vegetation	
Mild, cloudy	Gently undulated		CER (Cereals)	
Grid Reference		Postcode	Altitude	Area
TF056120		PE9 4QD	27	

MAFF prov	MAFF detailed		Flooding		
Grade 3	None	Flood Zone 1			
AAR	AT0	MDw	MDp	FCD	
579	1424	116	110	112	Climate grade

Bedrock	Superficial deposits
Rutland Formation	Head

| Soil association(s) 1:250,000 | Detailed soil information |
| :--- | :--- | :--- |
| Elmton 3 | None |

Revision Number	Date Revised
2	$03 / 11 / 2022$

Detailed: Area J SP1

Project Number	Project Name	Parcel	
C925JSP1	Mallard Pass Detailed ALC Area J SP1		
Date of Survey	Survey Type	SP1	
		Surveyor(s)	Company
$12 / 10 / 2022$	Detailed ALC	RWA	Askew Land and

Weather	Relief		Land use and vegetation	
Mild, cloudy, light showers	Undulated		CER (Cereals)	
Grid Reference				
TF611101		Postcode	Altitude	Area

MAFF prov	MAFF detailed		Flooding		
Grade 3	None	Flood Zone 1			
AAR	AT0	MDw	MDp	FCD	
578	1424	116	110	113	Climate grade

Bedrock	Superficial deposits
Limestone	None Recorded

| Soil association(s) 1:250,000 | Detailed soil information |
| :--- | :--- | :--- |
| Sherborne Association | None |

Revision Number	Date Revised
2	$02 / 11 / 2022$

Detailed: Area J SP2

Project Number	Project Name	Parcel	
C925J	Mallard Pass Detailed ALC Area J SP2		
Date of Survey	Survey Type	SP2	
$14 / 10 / 2022$	Detailed ALC	Surveyor(s)	Company

Weather	Relief		Land use and vegetation	
Mild, cloudy	Gently undulated		CER (Cereals)	
Grid Reference		Postcode	Altitude	Area
TF061101		PE9 4QD	27	

MAFF prov	MAFF detailed		Flooding		
Grade 3	None	Flood Zone 1			
AAR	AT0	MDw	MDp	FCD	
578	1424	116	110	113	Climate grade

Bedrock	Superficial deposits
Limestone	None Recorded

| Soil association(s) 1:250,000 | Detailed soil information |
| :--- | :--- | :--- |
| Sherborne Associaiton | None |

Revision Number	Date Revised
2	$02 / 11 / 2022$

Annex 5

Description of Soil Pits

Annex 6
 Certificates of Analysis

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 17/01/2022
(\ddagger
UKAS

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD

Page 3 of 5

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD

Page 1 of 10

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD
DATE ISSUED: 01/11/2022
0998

Contract	Mallard Pass Solar Farm
Serial No.	$41612 _1$

Page 6 of 10

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD

TEST REPORT
ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Mallard Pass Solar Farm
Serial No.	$41612 _1$

DETERMINATION OF PARTICLE SIZE DISTRIBUTION						
Borehole / Pit No.	Depth (m)	Sample		Description		Remarks
		Type	Reference			
-	$\begin{gathered} 0.00- \\ 0.25 \end{gathered}$	K	-	Yellowish recently ac coarse ang	own slightly gravelly slightly sandy sily ve and decayed roots and plant mate lar and subangular limestone	Approximately 20% material greater than 2 mm removed before test
Method of Test:		Hydrometer + Pre-sieve			Method of Pretreatment:	Not required

H	Particle Size (mm)	Passing (\%)	Silt by Dry Mass (\%)
Y	0.0334	69	47
r	0.0241	64	
0	0.0174	57	
m	0.0093	45	Clay by Dry Mass (\%)
e	0.0067	40	
t	0.0048	35	
r	0.0033	32	29
	0.0015	27	

Sieve Size (mm)	Passing (\%)	Sand By Dry Mass (\%)
2.00	100	
1.18	97	
0.600	93	
0.425	91	
0.300	88	
0.212	85	
0.150	82	
0.063	76	

Sieve Size (mm)	Passing (\%)	2mm+ By Dry Mass (\%)
300		
125		
90		
63		
50		
37.5		
28		
20		
14		
10		
6.3		
5		

[^3]Comments:

Plan KCC3051/01A
Auger Point Plan

PLAN	Plan KCC3051/08		
TITLE	Auger Points Plan		
SITE	Mallard Pass		
CLIENT	LDA Design		
NUMBER	KCC3051/08 11/22hr		
DATE	November 2022	SCALE	NTS
KERNON COUNTRYSIDE CONSULTANTS LTD GREENACRES BARN, PURTON STOKE, SWINDON, WILTSHIRE SN5 4LL Tel 01793771333 Email: info@kernon.co.uk This plan is reproduced from the Ordnance Survey under copyright license 100015226			

Figure 12.1
ALC Across Order Limits

Figure 12.2
ALC Solar PV Site and Field Margins

| KEY | | Ha | $\%$ | PLAN | Figure 12.2 |
| :--- | :--- | :---: | :---: | :--- | :--- | :--- |
| | Grade 1 | 0 | 0 | TITLE | ALC Solar PV Site and Field Margins |

[^0]: ${ }^{1}$ British Society of Soil Science. Professional Competency Scheme Document 2 'Agricultural Land Classification of England and Wales'. Available online @ \square Last accessed February 2022
 ${ }^{2}$ The Ministry of Agriculture, Fisheries and Food (MAFF) was incorporated within the Department for Environment, Food and Rural Affairs (Defra) in November 2001
 ${ }^{3}$ Natural England (December, 2012). 'Agricultural Land Classification: protecting the best and most versatile agricultural land (TIN049)'. Available online @ Last accessed February 2022

[^1]: ${ }^{4}$ Government Flood Map for Planning website. Available online @ https://flood-map-for-planning.service.gov.uk/ Last accessed January 2022

[^2]: © Natural England 2012

[^3]: Method of Preparation:
 Method of test:
 BS1377: Part 1: 2016: 8.3 \& 8.4.5
 Type of Sample Key:
 BS1377: Part 2: 1990: 9.2,9.5
 U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

